RS Aggarwal Class 6 Maths Solutions Chapter 10- Ratio, Proportion And Unitary Method Exercise 10B

RS Aggarwal 2021-2022 for Class 6 Maths Solutions Chapter 10- Ratio, Proportion And Unitary Method


RS Aggarwal Class 6 Math Solution Chapter 10- Ratio, Proportion And Unitary Method, Exercise 10B is available here. RS Aggarwal Class 6 Math Solutions are solved by expert teachers in step by step, which help the students to understand easily.  RS Aggarwal textbooks are responsible for a strong foundation in Maths. These textbook solutions help students in exams as well as their daily homework routine. The solutions included are easy to understand, and each step in the solution is described to match the students’ understanding.


Rs Aggarwal Class 6 Math Solution Chapter 10- Ratio, Proportion And Unitary Method


Exercise 10B


1. Determine if the following numbers are in proportion:

    (i) 4, 6, 8, 12

    (ii) 7, 42, 13, 78

    (iii) 33, 121, 9, 96

    (iv) 22, 33, 42, 63

    (v) 32, 48, 70, 210

    (vi) 150, 200, 250, 300

Solution: 

    (i) 4, 6, 8, 12

    `frac\{4}{6}` = `frac\{cancel 4^2}{cancel 6^3}` = `frac\{2}{3}`

    `frac\{8}{12}` = `frac\{cancel 8^2}{cancel 12^3}` = `frac\{2}{3}`

    ∵ `frac\{2}{3}` =  `frac\{2}{3}`

    Hence, 4 : 6 : : 8 : 12 are in proportion.


    (ii) 7, 42, 13, 78

    `frac\{7}{42}` = `frac\{cancel 7^1}{cancel 42^6}` = `frac\{1}{6}`

    `frac\{13}{78}` = `frac\{cancel 13^1}{cancel 78^6}` = `frac\{1}{6}`

    ∵ `frac\{1}{6}` =  `frac\{1}{6}`

    Hence, 7 : 42 : : 13 : 78 are in proportion.


    (iii) 33, 121, 9, 96

    `frac\{33}{121}` = `frac\{cancel 33^3}{cancel 121^11}` = `frac\{3}{11}`

    `frac\{9}{96}` = `frac\{cancel 9^3}{cancel 96^32}` = `frac\{3}{32}`

    ∵ `frac\{3}{11}` ≠  `frac\{3}{32}`

    Hence, 33 : 121 : : 9 : 96 are not in proportion.


    (iv) 22, 33, 42, 63

    `frac\{22}{33}` = `frac\{cancel 22^2}{cancel 33^3}` = `frac\{2}{3}`

    `frac\{42}{63}` = `frac\{cancel 42^2}{cancel 63^3}` = `frac\{2}{3}`

    ∵ `frac\{2}{3}` =  `frac\{2}{3}`

    Hence, 22 : 33 : : 42 : 63 are in proportion.


    (v) 32, 48, 70, 210

    `frac\{32}{48}` = `frac\{cancel 32^2}{cancel 48^3}` = `frac\{2}{3}`

    `frac\{70}{210}` = `frac\{cancel 70^1}{cancel 210^3}` = `frac\{1}{3}`

    ∵ `frac\{2}{3}` ≠  `frac\{1}{3}`

    Hence, 32 : 48 : : 70 : 210 are not in proportion.


    (vi) 150, 200, 250, 300

    `frac\{150}{200}` = `frac\{cancel 150^3}{cancel 200^4}` = `frac\{3}{4}`

    `frac\{250}{300}` = `frac\{cancel 250^5}{cancel 300^6}` = `frac\{5}{6}`

    ∵ `frac\{3}{4}` ≠  `frac\{5}{6}`

    Hence, 150 : 200 : : 250 : 300 are not in proportion.


2. Verify the following:

    (i) 60 : 105 : : 84 : 147

    (ii) 91 : 104 : : 119 : 136

    (iii) 108 : 72 : : 129 : 86

    (iv) 39 : 65 : : 141 : 235

Solution: 

    (i) 60 : 105 : : 84 : 147

    `frac\{60}{105}` = `frac\{cancel 60^4}{cancel 105^4}` = `frac\{4}{7}`

    `frac\{84}{147}` = `frac\{cancel 84^4}{cancel 147^7}` = `frac\{4}{7}`

    ∵ `frac\{4}{7}` =  `frac\{4}{7}`

    Hence, 150 : 200 : : 250 : 300 are in proportion.


    (ii) 91 : 104 : : 119 : 136

    `frac\{91}{104}` = `frac\{cancel 91^7}{cancel 104^8}` = `frac\{7}{8}`

    `frac\{119}{136}` = `frac\{cancel 119^7}{cancel 136^8}` = `frac\{7}{8}`

    ∵ `frac\{7}{8}` =  `frac\{7}{8}`

    Hence, 91 : 104 : : 119 : 136 are in proportion.


    (iii) 108 : 72 : : 129 : 86

    `frac\{108}{72}` = `frac\{cancel 108^3}{cancel 72^2}` = `frac\{3}{2}`

    `frac\{129}{8}` = `frac\{cancel 129^3}{cancel 86^2}` = `frac\{3}{2}`

    ∵ `frac\{3}{2}` =  `frac\{3}{2}`

    Hence, 108 : 72 : : 129 : 86 are in proportion.


    (iv) 39 : 65 : : 141 : 235

    `frac\{39}{65}` = `frac\{cancel 39^3}{cancel 65^5}` = `frac\{3}{5}`

    `frac\{141}{235}` = `frac\{cancel 141^3}{cancel 86^5}` = `frac\{3}{5}`

    ∵ `frac\{3}{5}` =  `frac\{3}{5}`

    Hence, 39 : 65 : : 141 : 235 are in proportion.


3. Find the value of x in each of the following proportions: 

    (i) 55 : 11 : : x : 6

    (ii) 27 : x : : 63  :84

    (iii) 51 : 85 : : 57 : x 

    (iv) x : 92 : : 87 :116

Solution: 

    (i) 55 : 11 : : x : 6

    Product of extremes = Product of means

      55 × 6 = 11 × x

⇒       11x = 330

⇒           x =  `frac\{cancel 330^3}{cancel 11}`  = 30


    (ii) 27 : x : : 63 : 84

     Product of extremes = Product of means

        27 ​× 84 = x ​× 63

 ⇒         63x = 2268

 ⇒             x =  `frac\{cancel 2268^36}{cancel 63}`  = 36


    (iii) 51: 85 : : 57 : x 

    Product of extremes = Product of means

         51 × x = 85 × 57

 ⇒         51x = 4845

 ⇒            x =   `frac\{cancel 4845^95}{cancel 51}`   = 95


    (iv) x : 92 : : 87 : 116

    Product of extremes = Product of means

          x ×  116 = 92 ​× 87

 ⇒          116x = 8004

 ⇒               x  = `frac\{cancel 8004^69}{cancel 116}` = 69


4. Write (T) for true and (F) for false in case of each of the following:

    (i) 51 : 68 : : 85 : 102

    (ii) 36 : 45 : : 80 : 100

    (iii) 30 bags :18 bags : : Rs 450 : Rs 270

    (iv) 81 kg : 45 kg : : 18 men : 10 men

    (v) 45 km : 60 km : : 12 h : 15 h

    (vi) 32 kg : Rs 36 : : 8 kg : Rs 9

Solution: 

    (i) 51 : 68 : : 85 : 102

   Product of means = 68 × 85 = 5780

   Product of extremes = 51 × 102 = 5202

   Product of means ≠ Product of extremes

    Hence, (F).


    (ii) 36 : 45 : : 80 : 100

  Product of means = 45 ​× 80 = 3600

  Product of extremes = 36 × 100 = 3600

  Product of means = Product of extremes 

   Hence, (T).


    (iii) 30 bags : 18 bags : : Rs 450 : Rs 270

       or 30 :18 : : 450 : 270

     Product of means = 18 × 450 = 8100

     Product of extremes = 30 ​× 270 = 8100

     Product of means = Product of extremes 

     Hence, (T).


    (iv) 81 kg : 45 kg : : 18 men : 10 men

      or 81 : 45 : : 18 : 10

     Product of means = 45 × 18 = 810

     Product of extremes = 81 × 10 = 810

     Product of means = Product of extremes

      Hence, (T).


    (v) 45 km : 60 km : : 12 h : 15 h

     or,45 : 60 : : 12 : 15

     Product of means = 60 × 12 = 720

     Product of extremes = 45 × 15 = 675

     Product of means ≠ Product of extremes 

      Hence, (F).


    (vi) 32 kg : Rs 36 : : 8 kg : Rs 9

     Product of means = 36 × 8 = 288

     Product of extremes = 32 × 9 = 288

     Product of means = Product of extremes

     Hence, (T).


5. Determine if the following ratios form a proportion:

    (i) 25 cm :1 m and Rs 40 : Rs 160

    (ii) 39 litres : 65 litres and 6 bottles : 10 bottles

    (iii) 200 mL : 2.5 L and Rs 4 : Rs 50

    (iv) 2 kg : 80 kg and 25 g : 625 kg 

Solution: 

    (i) 25 cm : 1 m and Rs 40 : Rs 160 

    (or) 25 cm:100 cm and Rs 40 : Rs 160

      `frac\{25}{100}`  =  `frac\{25 ​÷ 25}{100​ ÷ 25}`  = `frac\{1}{4}`  

    and  `frac\{40}{160}`  =  `frac\{40 ÷ 40}{160 ÷ 40}`  = `frac\{1}{4}`  

           Hence, they are in proportion.


    (ii) 39 litres : 65 litres and 6 bottles : 10 bottles

       `frac\{39}{65}`  =  `frac\{39 ​÷ 13}{65​ ÷ 13}`  = `frac\{3}{5}`  

    and  `frac\{6}{10}`  =  `frac\{6 ÷ 2}{10 ÷ 2}`  = `frac\{3}{5}`  

      Hence they are  in proportion.


    (iii) 200 mL : 2.5 L and Rs 4 : Rs 50 

    (or) 200 mL : 2500 mL and Rs 4 : Rs 50

        `frac\{200}{2500}`  =  `frac\{200 ​÷ 100}{2500​ ÷ 100}`  = `frac\{2}{25}`  

    and  `frac\{4}{50}`  =  `frac\{4 ÷ 2}{50 ÷ 2}`  = `frac\{2}{25}`  

     Hence, they are in proportion.


    (iv) 2 kg : 80 kg and 25 g : 625 kg  

    (or)  2 kg : 80 kg and 25 g : 625000 g

        `frac\{2}{80}`  =  `frac\{2 ​÷ 2}{80​ ÷ 2}`  = `frac\{1}{40}`  

    and  `frac\{25}{625000}`  =  `frac\{25 ÷ 25}{625000 ÷ 25}`  = `frac\{1}{25000}`  

        Hence, they are not in proportion.


6. In a proportion, the 1st, 2nd and 4th terms are 51, 68 and 108 respectively. Find the 3rd term.

Solution: 

    Let the 3rd term be x.

    Thus, 51: 68 : : x : 108

     We know:

     Product of extremes = Product of means

            51 × 108 = 68 × x

    ⇒          5508 = 68x

    ⇒          x =  `frac\{cancel 5508^81}{cancel 68}`  = 81

    Hence, the third term is 81.


7. The 1st, 3rd and 4th terms of a proportion are 12, 8 and 14 respectively. Find the 2nd term.

Solution: 

    Let the second term be x.

    Then. 12 : x : : 8 : 14

    We know:

      Product of extremes = Product of means

                     12 × 14 = 8x

      ⇒                 168 = 8x

​      ⇒                    x =   `frac\{cancel 168^21}{cancel 8}`  = 21

     Hence, the second term is 21.


8. Show that the following numbers are in continued proportion:

     (i) 48 , 60 , 75

    (ii) 36 , 90 , 225

    (iii) 16 , 84, 441

Solution: 

    (i) 48 : 60, 60 : 75

      Product of means = 60 × 60 = 3600

      Product of extremes = 48 × 75 = 3600

    Product of means = Product of extremes

       Hence, 48 : 60 : : 60 : 75 are in continued proportion.


    (ii) 36 : 90, 90 : 225

     Product of means = 90 × 90 = 8100

     Product of extremes = 36 × 225 = 8100

    Product of means = Product of extremes

      Hence,  36 : 90, 90 : 225 are in continued proportion.


    (iii) 16 : 84, 84 : 441

    Product of means = 84 × 84 = 7056

    Product of extremes = 16 × 441 = 7056

    Product of means = Product of extremes

    Hence, 16 : 84, 84 : 441 are in continued proportion.

                             

9. If 9, x, x 49 are in proportion, find the value of x.

Solution: 

    Given: 9 : x : : x : 49

    We know:

      Product of means = Product of extremes

              `x × x = 9 × 49`

    ⇒    `x^2 = 441`

    ⇒     `x^2 = (21)^2`

    ⇒         `x = 21`


10. An electric pole casts a shadow of length 20 m at a time when a tree 6 m high casts a shadow of length 8 m. Find the height of the pole.

Solution: 

    Let the height of the pole = x m

    Then, we have:

      x : 20 : : 6 : 8

    Now, we know:

   Product of extremes = Product of means

     8x = 20​ × 6

       x =  `frac\{cancel 120^15}{cancel 8}`  = 15

    ​Hence, the height of the pole is 15 m.


11. Find the value of x if 5 : 3 : : x : 6.

Solution: 

    5 :3 : : x : 6 

    We know:

   Product of means = Product of extremes

     3x = 5 ​× 6

  ⇒ x =  `frac\{cancel 30^10}{cancel 3}`  = 10

    ∴ x = 10





एक टिप्पणी भेजें