RS Aggarwal Class 6 Maths Chapter 3 - Whole Number Exercise 3B

 RS Aggarwal 2021-2022 for Class 6 Maths Chapter 3 - Whole Number 

Rs Aggarwal Class 6 Math Solution Chapter 3 Whole Number is available here. RS Aggarwal Class 6 Math Solutions are solved by expert teachers in step by step, which help the students to understand easily.  RS Aggarwal textbooks are responsible for a strong foundation in Maths. These textbook solutions help students in exams as well as their daily homework routine. The solutions included are easy to understand, and each step in the solution is described to match the students’ understanding.

Class 6 RS Aggarwal Maths Chapter 3 - Whole Number

Exercise 3B

1: Fill in the blanks to make each of the following a true statements:

(i) 458 + 639 = 639 +.....

(ii) 864 + 2006 - 2006 + ....

(iii) 1946 + ......  = 984 +1946

(iv) 8063 +0 = ......

(v) 53501 + (574 + 799) = 574 + (53501 + ..... )

Solution:

(i) 458 + 639 = 639 + 458

(ii) 864 + 2006 = 2006 + 864

​(iii) 1946 + 984 = 984 + 1946

(iv) 8063 + 0 = 8063

(v) 53501 + (574 + 799) = 574 + (53501 + 799)


2: Add the following numbers and check by reversing the order of the addends:

(i) 16509 + 114

(ii) 2359 +548 

(iii) 19753 +2867

Solution:

(i) 16509 + 114 = 16623

 By reversing the order of the addends, we get:

  114 + 16509 = 16623  

∴ 16509 + 114 = 114 + 16509

(ii) 2359 + 548 = 2907 

 By reversing the order of the addends, we get:

     548 + 2359 = 2907

∴ 2359 + 548 = 548 + 2359

(iii) 19753 + 2867 = 22620

   By reversing the order of the addends, we get:

     2867 + 19753 = 22620

∴ 19753 + 2867 = 2867 + 19753

   

3: Find the sum: (1546 +498) +3589. Also, find the sum: 1546 + (498 + 3589) Are the two sums equal? State the property satisfied.

Solution:

We have:

(1546 + 498) + 3589 = 2044 + 3589 = 5633

Also, 1546 + (498 + 3589) = 1546 + 4087 = 5633

Yes, the two sums are equal.

The associative property of addition is satisfied.


4: Determine each of the sums given below using suitable rearrangement

(i) 953 + 707 + 647

(ii) 1983 + 647 + 217 + 353 

(iii) 15409 + 278 + 691 + 422

(iv) 3259 + 10001 + 2641 + 9999.

(v) 1 + 2 + 3 + 4 + 96 + 97 + 98 + 99

(vi) 2 + 3 + 4 + 5 + 45 + 46 + 47 + 48

Solution:

(i) 953 + 707 + 647

    (953 + 647) + 707                                   (By associative property of addition)

    = 1600 + 707  

    = 2307   

 (ii) 1983 + 647 + 217 + 353

    (1983 + 217)  + (647 +353)                    (By associative property of addition)

    = 2200 + 1000

    =  3200

(iii) 15409 + 278 + 691 + 422

    (15409 + 691) + (278 + 422)                     (By associative property of addition)

    = 16100 + 700

    = 16800

(iv) 3259 + 10001 + 2641 + 9999

    (3259 + 2641) + (10001 +  9999)             (By associative property of addition)

    = 5900 + 20000

    = 25900

(v)1 + 2 + 3 + 4 + 96 + 97 + 98 + 99

    (1 + 99) +(2 + 98) + (3 + 97) + (4 + 96)       (By associative property of addition)

    = (100) + (100) + (100) + (100)

    =  400

(vi) 2 + 3 + 4 + 5 + 45 + 46 + 47 + 48

    (2 + 48 ( 3 + 47) + (4 + 46 ( 5 + 45)                 (By associative property of addition)

    = (50) + (50) + (50) + (50)  

    = (100) + (100)  

    = 200


5: Find the sum by short method

(i) 6784 +9999

(ii) 10578 +99999

Solution:

(i)  6784 + 9999

    =  6784 + (10000 − 1)

    =  (6784 + 10000) − 1                              (Using associative property of addition)

    = 16784 − 1

    = 16783

(ii) 10578 + 99999

    = 10578 + (100000 − 1)

    = (10578 + 100000) − 1                         (Using associative property of addition)

    = 110578 − 1

    = 110577


6: For any whole numbers a, b, c, is it true that (a+b)+c=a+ (c+b) ? Give reasons.

Solution:

For any whole numbers a, b and c, we have:  (a + b) + c = a + ( b + c​) 

Let a = 5, b = 6 and c = 7 [we can take any values for a, b and c]

LHS = (a + b​) + c

        = (5 + 6) + 7

        = 11 + 7

        = 18

RHS = a + (c + b)

        = a + (b + c)       [∵ Whole numbers follow the commutative law]                    

        = 5 + (6 + 7)

        = 5 + 13

        = 18

∴ This shows that associativity (in addition) is one of the properties of whole numbers.


7: Complete each one of the following magic squares by supplying missing numbers:

(i)     


9

2


5


8





(ii)     
16

2



10




4


(iii)     

21516
912



710
14

17

(iv)     


18174


1411

910
19

16


Solution:

(i)     

4

9

2

3

5

7

8

16


(ii)     

16

2

12

6

10

14

8

184

(iii)     

215165
912116
138710
143417

(iv)     

718174
8131411
1291015
196516


8: Write (T) for true and (F) for false for each of the following statements 

(i) The sum of two odd numbers is an odd number. 

(ii) The sum of two even numbers is an even number.

(iii) The sum of an even number and an odd number is an odd number.

Solution:

(i)  F (false). 

The sum of two odd numbers may not be an odd number. Example: 3 + 5 = 8, which is an even number.

  (ii) T (true). 

The sum of two even numbers is an even number. Example: 2 + 4 = 6, which is an even number.

  (iii) T (true). 

The sum of an even and an odd number is an odd number. Example: 5 + 4 = 9, which is an odd number.




एक टिप्पणी भेजें