RS Aggarwal 2021-2022 for Class 6 Maths Solutions Chapter 9- Linear Equations in One Variable
RS Aggarwal Class 6 Math Solution Chapter 9- Linear Equations in One Variable Exercise 9B is available here. RS Aggarwal Class 6 Math Solutions are solved by expert teachers in step by step, which help the students to understand easily. RS Aggarwal textbooks are responsible for a strong foundation in Maths. These textbook solutions help students in exams as well as their daily homework routine. The solutions included are easy to understand, and each step in the solution is described to match the students’ understanding.
Rs Aggarwal Class 6 Math Solution Chapter 9- Linear Equations in One Variable
Exercise 9B
1. x+5=12
Solution:
x+5=12
Subtracting 5 from both the sides:
⇒ x + 5 − 5 = 12−5
⇒ x=7
Verification:
Substituting x=7 in the L.H.S.:
L.H.S.= x+5
= 7+5
= 12
R.H.S.= 12
∵ L.H.S. = R.H.S.
Hence, verified.
2. x+3=–2
Solution:
x+3=−2
Subtracting 3 from both the sides:
⇒ x + 3 − 3 = −2 − 3
⇒ x=−5
Verification:
Substituting x=−5 in the L.H.S.:
L.H.S = x+3
= −5 + 3
= −2
∵ R.H.S. = −2
Hence, verified.
3. x–7=6
Solution:
x−7=6
Adding 7 on both the sides:
⇒ x − 7 + 7 = 6 + 7
⇒ x = 13
Verification:
Substituting x = 13 in the L.H.S.:
L.H.S.= x−7
= 13 − 7
= 6
R.H.S.= 6
∵ L.H.S. = R.H.S.
Hence, verified.
4. x–2=–5
Solution:
x−2=−5
Adding 2 on both sides:
⇒ x − 2 + 2 = −5 + 2
⇒ x = −3
Verification:
Substituting x = −3 in the L.H.S.:
L.H.S. = x–2
= −3 − 2
= −5
R.H.S.= −5
So, L.H.S. = R.H.S.
Hence, verified.
5. 3x–5=13
Solution:
3x−5=13
⇒ 3x − 5 + 5 = 13+5
[Adding 5 on both the sides]
⇒ 3x=18
⇒ 3x3 = 1863
[Dividing both the sides by 3]
⇒ x=6
Verification:
Substituting x = 6 in the L.H.S.:
L.H.S.= 3x–5
= 3(6) −5
= 18−5
= 13
R.H.S.= 13
∵ L.H.S. = R.H.S.
Hence, verified.
6. 4x+7=15
Solution:
4x+7=15
⇒ 4x + 7 − 7 = 15 − 7
[Subtracting 7 from both the sides]
⇒ 4x=8
⇒ 4x4 = 824
[Dividing both the sides by 4]
⇒ x=2
Verification:
Substituting x=2 in the L.H.S.:
L.H.S.= 4x+7
= 4×2+7
= 8+7
= 15
R.H.S.= 15
∵ L.H.S. = R.H.S.
Hence, verified.
7. x5 = 12
Solution:
x5 = 12
⇒ x5 × 5 = 12 × 5
[Multiplying both the sides by 5]
⇒ x=60
Verification:
Substituting x=60 in the L.H.S.:
L.H.S.= x5
= 60125
= 12
R.H.S. = 12
∵ L.H.S. = R.H.S.
Hence, verified.
8. 3x5 = 15
Solution:
3x5 = 15
⇒ 3x5 × 5 = 15 × 5
[Multiplying both the sides by 5]
⇒ 3x=75
⇒ 3x3 = 75253
[Dividing both the sides by 3]
⇒ x=25
Verification:
Substituting x=25 in the L.H.S.:
L.H.S. = 3x5
= 3×255
= 75155
= 15
R.H.S .= 15
∵ L.H.S. = R.H.S.
Hence, verified.
9. 5x–3=x+17
Solution:
5x−3=x+17
⇒ 5x−x=17+3
[Transposing x to the L.H.S. and 3 to the R.H.S.]
⇒ 4x=20
⇒ 4x4 = 2054
[Dividing both the sides by 4]
⇒ x=5
Verification:
Substituting x = 5 on both the sides:
L.H.S. = 5x–3
= 5(5)−3
= 25 − 3
= 22
R.H.S. = x+17
= 5 + 17
= 22
∵ L.H.S. = R.H.S.
Hence, verified.
10. 2x–12 = 3
Solution:
2x − 12 = 3
⇒ 2x −12 + 12 = 3 + 12
[Adding 12 on both the sides]
⇒ 2x = 6+12
⇒ 2x = 72
⇒ 2x2 = 72×2
[Dividing both the sides by 2]
⇒ x = 74
Verification:
Substituting x = 74 in the L.H.S.
L.H.S. = 2x − 12
= 2 × 742 − 12
= 72 − 12
= 7−12
= 632
= 3
R.H.S.= 3
So, L.H.S. = R.H.S.
Hence, verified.
11. 3(x+6)=24
Solution:
3(x+6)=24
⇒ 3x+18=24
⇒ 3x + 18 − 18 = 24−18
[Subtracting 18 from both the sides]
⇒ 3x=6
⇒ 3x3 = 623
[Dividing both the sides by 3]
⇒ x=2
Verification:
Substituting x = 2 in the L.H.S.:
L.H.S.= 3(x+6)
= 3(2+6)
= 3×8=24
R.H.S.= 24
So, L.H.S. = R.H.S.
Hence, verified.
12. 6x+5=2x+17
Solution:
6x+5=2x+17
⇒ 6x −2x=17−5
[Transposing 2x to the L.H.S. and 5 to the R.H.S.]
⇒ 4x=12
⇒4x4 = 1234
[Dividing both the sides by 4]
⇒ x=3
Verification:
Substituting x = 3 on both the sides:
L.H.S. = 6x+5
= 6(3)+5
= 18+5
= 23
R.H.S.= 2x+17
= 2(3)+17
= 6+17
= 23
So, L.H.S. = R.H.S.
Hence, verified.
13. x4 – 8 = 1
Solution:
x4 − 8 = 1
⇒ x4− 8 + 8 = 1 + 8
[Adding 8 on both the sides]
⇒ x4 = 9
⇒ x4 × 4 = 9×4
[Multiplying both the sides by 4]
⇒ x=36
Verification:
Substituting x=36 in the L.H.S.:
L.H.S. = x4 – 8
= 3694 − 8
= 9 − 8 = 1
R.H.S.= 1
So, L.H.S. = R.H.S.
Hence, verified.
14. x2 = x3 + 1
Solution:
x2 = x3 + 1
⇒ x2 − x3 = 1
[Transposing x3 to the L.H.S.]
⇒ 3x−2x6 = 1
⇒ x6 = 1
⇒ x2 × 63 = 1 × 6
[Multiplying both the sides by 6]
⇒ x=6
Verification:
Substituting x=6 on both the sides:
L.H.S.= x2
= 632
= 3
R.H.S.= x3 + 1
= 623 + 1
= 2+1
= 3
So, L.H.S. = R.H.S.
Hence, verified.
15. 3(x+2)–2(x–1)=7
Solution:
3(x+2)−2(x−1)=7
⇒ 3x+6−2x+2=7
⇒ x+8=7
⇒ x + 8 − 8 = 7−8
[Subtracting 8 from both the sides]
⇒ x=−1
Verification:
Substituting x=−1 in the L.H.S.:
L.H.S. = 3(x+2)–2(x–1)
= 3(−1+2)−2(−1−1)
= 3(1)−2(−2)
= 3+4
= 7
R.H.S.= 7
So, L.H.S. = R.H.S.
Hence, verified.
16. 5(x–1)+2(x+3)+6=0
Solution:
5(x– 1)+2(x+3)+6=0
⇒ 5x– 5+2x+6+6=0
⇒ 7x+7=0
⇒ x+1=0 (Dividing by 7)
⇒ x=–1
Verification:
Substituting x = –1 in the L.H.S.:
L.H.S.= 5(x–1)+2(x+3)+6
= 5(–1–1)+2(–1+3)+6
= 5(–2)+2(2)+6
= –10+4+6
= – 10+10
= 0
R.H.S.= 0
Hence, verified.
17. 6(1–4x)+7(2+5x)=53
Solution:
6(1−4x)+7(2+5x)=53
⇒ 6−24x+14+35x=53
⇒ 11x+20=53
⇒ 11x + 20 − 20 = 53−20
[Subtracting 20 from both the sides]
⇒ 11x=33
⇒ 11x11= 33311
[Dividing both the sides by 11]
⇒ x=3
Verification:
Substituting x = 3 in the L.H.S.:
L.H.S.= 6(1–4x)+7(2+5x)
= 6(1−4×3)+7(2+5×3)
= 6(1−12)+7(2+15)
= 6(−11)+7(17)
= −66+119
= 53
R.H.S. = 53
So, L.H.S. = R.H.S.
Hence, verified.
18. 16(3x–5)–10(4x–8)=40
Solution:
16(3x−5)−10(4x−8)=40
⇒48x−80−40x+80=40
⇒ 8x =40
⇒ 8x8 = 4058
[Dividing both the sides by 8]
⇒ x=5
Verification:
Substituting x=5 in the L.H.S.:
L.H.S.= 16(3x–5)–10(4x–8)
= 16(3×5−5)−10(4×5−8)
= 16(15−5)−10(20−8)
= 16(10)−10(12)
= 160−120
= 40
R.H.S.= 40
So, L.H.S. = R.H.S.
Hence, verified.
19. 3(x+6)+2(x+3)=64
Solution:
3(x+6)+2(x+3)=64
⇒ 3x+18+ 2x+6=64
⇒ 5x+24=64
⇒ 5x + 24 − 24 = 64−24
[Subtracting 24 from both the sides]
⇒ 5x=40
⇒ 5x5 = 4085
[Dividing both the sides by 5]
⇒ x=8
Verification:
Substituting x=8 in the L.H.S.:
L.H.S. = 3(x+6)+2(x+3)
= 3(8+6)+2(8+3)
= 3(14)+2(11)
= 42+22
= 64
R.H.S.= 64
L.H.S. = R.H.S.
Hence, verified.
20. 3(2–5x)–2(1–6x)=1
Solution:
3(2−5x)−2(1−6x)=1
⇒ 6−15x− 2+12x=1
⇒ 4-3x=1
⇒ 3 =3x
⇒ x = 33
So, x = 1
Verification:
Substituting x=1 in the L.H.S.:
L.H.S. = 3(2–5x)–2(1–6x)
= 3(2−5×1)−2(1−6×1)
= 3(2−5)−2(1−6)
= 3(−3)−2(−5)
= −9+10
= 1
R.H.S.= 1
So, L.H.S. = R.H.S.
Hence, verified.
21. n4− 5 = n6 + 12
Solution:
n4 − 5 = n6 + 12
⇒ n4 − n6 = 12 + 5
[Transposing n6 to the L.H.S. and 5 to the R.H.S.]
⇒ 3n−2n12 = 1+102
⇒ n12 = 112
⇒ n12 × 12 = 112 × 126
[Dividing both the sides by 12]
⇒ n=66
Verification:
Substituting n=66 on both the sides:
L.H.S. = n4− 5
= 663342 − 5
= 332 − 5
= 33−102
= 232
R.H.S. = n6 + 12
= 66116 + 12
= 11 + 12
= 22+12
= 232
So, L.H.S. = R.H.S.
Hence, verified.
22. 2m3 + 8 = m2 − 1
Solution:
2m3 + 8 = m2 − 1
⇒ 2m3 − m2 = − 1 − 8
[Transposing m2 to the L.H.S. and 8 to the R.H.S.]
⇒ 4m−3m6 = −9
⇒ m6 = −9
⇒ m6 × 6 = −9×6
[Multiplying both the sides by 6]
⇒ m=−54
Verification:
Substituting x=−54 on both the sides:
L.H.S. = 2m3 + 8
= 2(−54)3 + 8
= −108-363 + 8
= −36+8
= −28
R.H.S.= m2 − 1
= −54-272 − 1
= −27−1
= −28
So, L.H.S. = R.H.S.
Hence, verified.
23. 2x5 – 32 = x2 + 1
Solution:
2x5 − 32 = x2 + 1
⇒ 2x5− x2 = 1 + 32
[Transposing x2 to the L.H.S. and 32 to R.H.S.]
⇒ 4x−5x10 = 2+32
⇒ −x10 = 52
⇒ −x10 × 10 = 52 × 105
[Multiplying both the sides by 10]
⇒ x=−25
Verification:
Substituting x=−25 on both the sides:
L.H.S. = 2x5 – 32
= 2(−25)5 − 32
= −50-105 − 32
= −10 − 32
= −232
R.H.S. = x2 + 1
= −252+ 1
= −25+22
= −232
So, L.H.S. = R.H.S.
Hence, verified.
24. x−35 – 2 = 2x5
Solution:
x−35 – 2 = 2x5
⇒ x−35 – 2 + 2 = 2x5 + 2
[ Adding both side 2]
⇒ x−35 – 2x5 = 2
⇒ x−3 –2x5 = 2
⇒ –x −35 = 2
⇒ –x −35 × 5 = 2×5
[ Multiply both side by 5]
⇒ –x −3 = 10
⇒ –x = 10+3
⇒ x = −13
Verification:
Substituting x=−13 on both the sides:
L.H.S. = x−35 – 2
= −13−35 − 2
= −165 − 2
= −16−105
= −265
R.H.S. = 2x5
= 2×(−13)5
= −265
L.H.S. = R.H.S.
Hence, verified.
25. 3x10 – 4 = 14
Solution:
3x10 − 4 = 14
⇒ 3x10 − 4 + 4 = 14+4
[Adding 4 on both the sides]
⇒ 3x10 = 18
⇒ 3x10 × 10 = 18×10
[Multiplying both the sides by 10]
⇒ 3x=180
⇒ 3x3 = 180603
[Dividing both the sides by 3]
⇒ x=60
Verification:
Substituting x=60 on both the sides:
L.H.S. = 3×6010 − 4
= 18010 − 4
= 18 − 4
= 14
R.H.S. = 14
So, L.H.S. = R.H.S.
Hence, verified.
26. 34(x−1) = (x–3)
Solution:
34(x−1) = (x–3)
⇒3x4 − 34 = x−3
⇒3x4 − x = −3 + 34
[Transposing x to the L.H.S. and −34 to the R.H.S.]
⇒3x−4x4 = −12+34
⇒ −x4 = −94
⇒ −x4 × (−4) = −94 × (−4)
[Multiplying both the sides by -4]
⇒ x=9
Verification:
Substituting x=9 on both the sides:
L.H.S. = 34(x−1)
= 34(9−1)
= 34 × 82
= 6
R.H.S. = x − 3
= 9 − 3
= 6
So, L.H.S. = R.H.S.
Hence, verified.
एक टिप्पणी भेजें
एक टिप्पणी भेजें