Processing math: 100%

RS Aggarwal Class 6 Maths Chapter 5- Fractions Exercise 5D

 RS Aggarwal 2021-2022 for Class 6 Maths Chapter 5- Fractions

RS Aggarwal Class 6 Math Solution Chapter 5- Fractions  Exercise 5D is available here. RS Aggarwal Class 6 Math Solutions are solved by expert teachers in step by step, which help the students to understand easily.  RS Aggarwal textbooks are responsible for a strong foundation in Maths. These textbook solutions help students in exams as well as their daily homework routine. The solutions included are easy to understand, and each step in the solution is described to match the students’ understanding.


 Rs Aggarwal Class 6 Math Solution Chapter 5- Fractions 


Exercise 5D


1. Define like and unlike fractions and give five examples of each. 


Solution:


    Like fractions: Fractions having the same denominator are called like fractions.

    Examples: 412 ,   612 ,   312 ,   712812 


    Unlike fractions: Fractions having different denominators are called unlike fractions.


    Example: 710 , 35, 59 , 712 , 1324


2. Convert 35, 710 , 815 and   1130   into like fractions.


Solution:


    We know that like fractions having same denominator.


    So, We do,


    L.C.M of 5, 10, 15 and 30 = 30


    Now, we convert the given fractions into equivalent fractions with 30 as the denominator.


    35 = 3×65×6 = 1830


     710 = 7×310×3 = 2130


    815` = 8×215×2 = 1630


    1130 = 11×130×1 = 1130


    Hence, the required like fractions are 1830, 2130, 1630, and 1130



3. Convert  1458 , 712 and   1324 into like fractions. 


Solution:


    We know that like fractions having same denominator.


    So, We do,


    L.C.M of 4, 8, 12 and 24= 24


    Now, we convert the given fractions into equivalent fractions with 24as the denominator.


   14 = 1×64×6 = 624


    58 = 5×38×3 = 1524


   712 = 7×212×2 = 1424


    1324 = 13×124×1 = 1324


    Hence, the required like fractions are 624, 1524, 1424, and 1324



4. Fill in the place holders with the correct symbol  > or <:


    (i) 89 59       (ii) 910710 (iii)  3767


    (iv) 1115815 (v) 611511     (vi)  11201720


Solution:


     (i) 89 > 59       (ii) 910 > 710 (iii)  37 < 67

    (iv) 1115 > 815 (v) 611 > 511     (vi)  1120 < 1720



5. Fill in the place holders with the correct symbol > or <: 


    (i) 34 35      (ii) 78 710     (iii)  411 911


    (iv) 811 813  (v) 512 58      (vi)  11141115


Solution:


        (i) 34 > 35      (ii) 78 > 710      (iii)  411 < 911


    (iv) 811 > 813  (v) 512 < 58      (vi)  1114 > 1115



Compare the fractions given below:


6. 4557


Solution:


     45 and  57


    By cross multiplying:     4 × 7 = 28 and 5 × 5 = 25     Clearly, 28 > 25


    ∴   4557



7. 38 , 56         


Solution:


     38 and  56


    By cross multiplying:     3 × 6 = 18 and 5 × 8 = 40     Clearly, 18 < 40


    ∴   38 < 56



8.   711 , 67


Solution:


     711 and  67


    By cross multiplying:     7 × 7 = 49 and 6 × 11 = 66     Clearly, 49 < 66


    ∴   711 < 67



9.  56911            


Solution:


     56 and  911


    By cross multiplying:     5 × 11 = 55 and 9 × 6 = 54     Clearly, 55 > 54


    ∴   56 > 911



10. 2349               


Solution:


     23 and  49


    By cross multiplying:     2 × 9 = 18 and 4 × 3 = 12     Clearly, 18 > 12


    ∴   23 > 49



11. 613 , 34


Solution:


     613 and  34


    By cross multiplying:     6 × 4 = 24 and 3 × 13 = 39     Clearly, 24 < 39


    ∴   613 < 34



12.  34 , 56        


Solution:


     34 and  56


    By cross multiplying:     3 × 6 = 18 and 5 × 4 = 20     Clearly, 18 < 20


    ∴   34 < 56



13.  58712           


Solution:


     58 and  712


    By cross multiplying:     5 × 12 = 60 and 7 × 8 = 56     Clearly, 60 > 56


    ∴   58 > 712



14.   49 , 56


Solution:


     49 and  56


    By cross multiplying:     4 × 6 = 24 and 5 × 9 = 45     Clearly, 24 < 45


    ∴   49 < 56




15.  45710           


Solution:


     45 and  710


    By cross multiplying:     4 × 10 = 40 and 7 × 5 = 35     Clearly, 40 > 35


    ∴   45 > 710



16. 78910          


Solution:


     78 and  910


    By cross multiplying:     7 × 10 = 70 and 9 × 8 = 72     Clearly, 70 < 72


    ∴   78 < 910



17.  11121315


Solution:


     1112 and  1315


    By cross multiplying:     11 × 15 = 165 and 13 × 12 = 156     Clearly, 165 > 156


    ∴   1112 > 1315



Arrange the following fractions in ascending order:


18.  12 ,   34 ,   56 ,   and   78 


Solution:


    L.C.M of 2, 4, 6 and 8 = 24

    We convert each of the given fractions into an equivalent fraction with denominator 24.


    12 = 1×122×12 = 1224


    34 = 3×64×6 = 1824


    56 = 5×46×4 = 2024


    78 = 7×38×3 = 2124


    Clearly, 1224 < 1824 < 2024< 2124


    ∴  12 < 34 < 56 < 78



19.  23 ,   56 ,   79 ,   and   1118


Solution:


    L.C.M of 3, 6, 9 and 18 = 18

    We convert each of the given fractions into an equivalent fraction with denominator 18.


    23 = 2×63×6 = 1218


    56 = 5×36×3 = 1518


    79 = 7×29×2 = 1418


    1118 = 11×118×1 = 1118


    Clearly, 1118 < 1218 < 1418< 1518


    ∴  1118 < 23 < 79 < 56



20.   25 ,   710 ,   1115 ,   and   1730


Solution:


    L.C.M of 5, 10, 15 and 30 = 30

    We convert each of the given fractions into an equivalent fraction with denominator 30.


    25  = 2×65×6 = 1230


    710 = 7×310×3 = 2130


    1115 = 11×215×2 = 2230


    1730 = 17×130×1 = 1730


    Clearly, 1230 < 1730 < 2130< 2230


    ∴  25 < 1730 < 710 < 1115



21.   34 ,   78 ,   1116 ,   and   2332


Solution:


    L.C.M of 4, 8, 16 and 32 = 32

    We convert each of the given fractions into an equivalent fraction with denominator 30.


    34  = 3×84×8 = 2432


    78 = 7×38×3 = 2132


    1116 = 11×216×2 = 2232


    2332 = 23×132×1 = 2332


    Clearly, 2132 < 2232 < 2332< 2432


    ∴  78 < 1116 < 2332 < 34




Arrange the following fractions in descending order: 


22.  34 ,   58 ,   1112 ,   and   1724 


Solution:


    L.C.M of 4, 8, 12 and 24 = 24

    We convert each of the given fractions into an equivalent fraction with denominator 24.


    34  = 3×64×6 = 1824


    58 = 5×38×3 = 1524


    1112 = 11×212×2 = 2224


    1724 = 17×124×1 = 1724


    Clearly, 2224 > 1824 > 1724> 1524


    ∴  1112 > 34 > 1724 > 58



23.  79 ,   512 ,   1118 ,   and   1736


Solution:


    L.C.M of 9, 12, 18 and 36 = 36

    We convert each of the given fractions into an equivalent fraction with denominator 36.


    79  = 7×49×4 = 2836


    512 = 5×312×3 = 1536


    1118 = 11×218×2 = 2236


    1736 = 17×136×1 = 1736


    Clearly, 2836 > 2236 > 1736> 1536


    ∴  79 > 1118 > 1736 > 512



24.  23 ,   35 ,   710 ,   and   815


Solution:


    L.C.M of 3, 5, 10 and 15 = 30

    We convert each of the given fractions into an equivalent fraction with denominator 30.


    23  = 2×103×10 = 2030


    35 = 3×65×6 = 1830


    710 = 7×310×3 = 2130


    815 = 8×215×2 = 1630


    Clearly, 2130 > 2030 > 1830 > 1630


    ∴  710 > 23 > 35 > 815



25.  57 ,   914 ,   1721 ,   and   3142


Solution:


    L.C.M of 7, 14, 21 and 42 = 42

    We convert each of the given fractions into an equivalent fraction with denominator 42.


    57  = 5×67×6 = 3042


    914 = 9×314×3 = 2742


    1721 = 17×221×2 = 3442


    3142 = 31×142×1 = 3142


    Clearly, 3442 > 3142 > 3042 > 2742


    ∴  1721 > 3142 > 57 > 914



26.  112 ,   123 ,   17 ,   19117 , 150 


Solution:


    The numerators are equal     So, The fraction having small denominator is greater than the fraction having large denominator     ∴ In descending order, we can write


    Clearly, 17 > 19 > 112 > 117 > 123 > 150



27.  37 ,   311 ,   35 ,   313 ,   34 ,   317    


Solution:


    The numerators are equal     So, The fraction having small denominator is greater than the fraction having large denominator     ∴ In descending order, we can write


    Clearly, 34 > 35 > 37 > 311 > 313 > 317



28. Lalita read 30 pages of a book containing 100 pages while Sarita read  25 of the book. Who read more?


Solution:


    Lalita reads 30 pages out of 100 pages.

    Sarita read 25 of the same book = 25 of 100 pages = 25 × 100 = 200405 = 40 pages

    Hence, Sarita read more pages than Lalita as 40 is greater than 30.



29. Rafiq exercised for  23 hour, while Rohit exercised for  34 hour. Who exercised for a longer time?


Solution:


    To know who spent more time on exercise,

    We have to compare 23 hour with 34 hour .

    On cross multiplying:     2 × 4 = 8 and 3 × 3 = 9     Clearly, 8 < 9

    23 < 34

    Hence, Rohit exercised for a longer time.



30. In a school 20 students out of 25 passed in VI A. while 24 out of 30 passed in VI B. Which

section gave better results?


Solution: 

    Fraction of students who passed in VI A = 2025 = 20÷525÷5 = 45

    Fraction of students who passed in VI B = 2430 = 24÷630÷6 = 45

    In both the sections, the fraction of students who passed is the same, so both the sections have the same result.






एक टिप्पणी भेजें