RS Aggarwal Class 6 Maths Chapter 4 - Integer Exercise 4B

 RS Aggarwal 2021-2022 for Class 6 Maths Chapter 4 - Integer 

RS Aggarwal Class 6 Math Solution Chapter 4 Integer Exercise 4B is available here. RS Aggarwal Class 6 Math Solutions are solved by expert teachers in step by step, which help the students to understand easily.  RS Aggarwal textbooks are responsible for a strong foundation in Maths. These textbook solutions help students in exams as well as their daily homework routine. The solutions included are easy to understand, and each step in the solution is described to match the students’ understanding.


 RS Aggarwal Class 6 Math Solution Chapter 4 Whole Number 


Exercise 4B


1: Use the number line and add, the following integers: 


    (i) 9 + ( 6)

    (ii) (3) + 7

    (iii) 8 + ( 8)

    (iv) ( 1 ) + ( 3)

    (v) ( 4 ) + ( 7)

    (vi) ( 2) + (  8)

    (vii) 3 + ( 2) + ( 4)

    (viii) (1) + (2) + ( 3) 

    (ix) 5 + ( 2) + ( 6)


So
lution: 

    (i) On the number line, we start from 0 and move 9 steps to the right to reach a point A. 
         Now, starting from A, we move 6 steps to the left to reach point B.

RS Aggarwal Class 6 Maths Chapter 4 - Integer Exercise 4Bi
    ∴ 9 + ( 6) = 3

    (ii) 
On the number line, we start from 0 and move 3 steps to the left to reach point A. 
          Now, starting from A, we move 7 steps to the right to reach point B.

RS Aggarwal Class 6 Maths Chapter 4 - Integer Exercise 4Bii
    ∴ (3) + 7 = 4

    (iii) On the number line, we start from 0 and move 8 steps to the right to reach point A. 
           Now, starting from A, we move 8 steps to the left to reach point B.
RS Aggarwal Class 6 Maths Chapter 4 - Integer Exercise 4Biii
     8 + ( 8) = 0

    (iv) On the number line, we start from 0 and move 1 step to the left to reach point A. 
           Now, starting from A, we move 3 steps to the left to reach point B.
RS Aggarwal Class 6 Maths Chapter 4 - Integer Exercise 4Biv

   ∴ ( 1 ) + ( 3) = 4

    (v) On the number line, we start from 0 and move 4 steps to the left to reach point A. 
          Now, starting from A, we move 7 steps to the left to reach point B.
RS Aggarwal Class 6 Maths Chapter 4 - Integer Exercise 4Bv

( 4 ) + ( 7) = – 11


    (vi) On the number line, we start from 0 and move 2 steps to the left to reach point A. 
           Now, starting from A, we move 8 steps to the left to reach point B.
RS Aggarwal Class 6 Maths Chapter 4 - Integer Exercise 4Bvi
      (2) + (  8)= – 10

    (vii) On the number line, we start from 0 and move 3 steps to the right to reach point A. 
            Now, starting from A, we move 2 steps to the left to reach point B. 
            Again, starting from B, we move 4 steps to the left to reach point C.

RS Aggarwal Class 6 Maths Chapter 4 - Integer Exercise 4Bvii


     ∴ 3 + ( 2) + ( 4)= – 10

    (viii) On the number line, we start from 0 and move 1 step to the left to reach point A. 
             Now, starting from A, we move 2 steps to the left to reach point B. 
            Again, starting from B, we move 3 steps to the left to reach point C.

RS Aggarwal Class 6 Maths Chapter 4 - Integer Exercise 4Bviii

        ∴   (1) + (2) + ( 3) = 6



    (ix) On the number line, we start from 0 and move 5 steps to the right to reach point A. 
           Now, starting from A, we move 2 steps to the left to reach point B. 
           Again, starting from B, we move 6 steps to the left to reach point C.

RS Aggarwal Class 6 Maths Chapter 4 - Integer Exercise 4Bix

        ∴   (5 + ( 2) + ( 6)= 3

2: Fill in the blanks:


    (i) (3) + (9) =

    (ii) (7) + (– 8) =

    (iii) (9) + 16 =

    (iv) ( 13 ) + 25 =

    (v)  8 + ( 17) =

    (vi)  2 + (12)  =


Solution:


    (i)  (−3) + (−9)         = −3 − 9         = −12     (ii)  (−7) + (−8)         = −7 − 8         = −15     (iii) (−9) + 16         = −9 + 16        = 7     (iv) (−13) + 25         = −13 + 25         = 12     (v) 8 + (−17)         = 8 − 17         = −9     (v) 2 + (−12)         = 2 − 12         = −10


3: Add:

    (i) −3 6 5                         (ii) −7 3
           − 8 7                             −6 8 7
                                    


     (iii) −1 0 6 5                 (iv) − 3 5 9 6
         − 9 8 7                      − 1 0 8 9
                             


Solution: 

    (i) −3 6 5                         (ii) −7 3
           − 8 7                            − 6 8 7
      − 4 5 2                            − 7 6 0


     (iii) −1 0 6 5                 (iv) − 3 5 9 6
         − 9 8 7                      − 1 0 8 9
        − 2 0 5 2                   − 4 6 8 5


4: Add :

    

    (i) − 2 0 6                         (ii) + 1 7 8

           + 9 8                             − 6 9
                                    


     (iii) −1 0 3                     (iv) − 4 9 3
       + 3 1 2                           + 2 8 9
                                  


Solution:


    (i) − 2 0 6                         (ii) + 1 7 8

           + 9 8                             − 6 9
         − 1 0 8                        1 0 9


     (iii) −1 0 3                     (iv) − 4 9 3
       + 3 1 2                           + 2 8 9
       2 0 9                         − 2 0 4



5: Find the sum of 


    (i) 137 and  354

    (ii) 1001 and  13

    (iii) 3057 and 199 

    (iv) 36 and 1027

    (v) 389 and  1032

    (vi)  36 and 100

    (vii) 3002 and  888

    (viii) 18, + 25 and  37

    (ix) 312, 39 and 192 

    (x) 51,  203, 36 and  28


Solution: 

    (i) 137 + (354)
        = 137 354
        = 217

    (ii) 1001 + (13)
        = 1001 13
        = 988

    (iii) 3057 + 199 
        = 2858

    (iv) 36 + 1027
        = 991

    (v) 389 +  (1032)
        = 389 – 1032
       = – 1421

   (vi)  36 + 100

        = – 36 + 100

       = 64


    (vii) 3002 and  888

        = 3002 + (888)

        = 3002 – 888

        = 2114


    (viii) 18, + 25 +  (37)

        = 18 + 25 37

        = 55 + 25

        = 30


    (ix) 312 + 39 + 192 

        = 312 + 131

        = 81


    (x) 51 + ( 203) + 36 +  (28)

        = 51 203 + 36 28

        = – 282 + 36

        = 246


6: Find the additive inverse of


    (i)  57 

    (ii) 183

    (iii) 0

    (iv)  – 1001 

    (v) 2054


Solution:


    (i) The additive inverse of 57 is 57

    (ii) The additive inverse of 183 is 183

    (iii) The additive inverse of 0 is 0

    (iv) The additive inverse of 1001 is 1001

    (v) The additive inverse of 2054 is 2054


7: Write the successor of each one of the following:


    (i) 201

    (ii) 70

    (iii)  5

    (iv)  99 

    (v)  500


Solution:


    (i) Successor of 201 = 201 + 1 = 202 

    (ii) Successor of 70 = 70 + 1 = 71

    (iii) Successor of 5 5 +  1 = 

    (iv) Successor of 99 = 99 + 1 = 98

    (v) Successor of  500 = 500 + 1 =  499


8: Write the predecessor of each one of the following:


    (i) 120 

    (ii) 79

    (iii) 8

    (iv)  141

    (v)  300


Solution:


    (i) Predecessor of 120 = 120 1 = 119

    (ii) Predecessor of 79 = 79 1 = 78

    (iii) Predecessor of 8 = 8 1 =

    (iv) Predecessor of 141 = 141 1 = 142

    (v) Predecessor of 300 = 300 1 = 301


9: Simplify:


    (i) ( 7) + ( 9) + 12 + ( 16) 

    (ii) 37 + ( 23) + ( 65) + 9 + ( 12)

    (iii) ( 145) + 79 + ( 265) + ( 41) + 2 

    (iv) 1056 + ( 798) + (– 38) + 44 + (– 1)


Solution:


    (i) (−7) + (−9) + 12 + (−16)

      = − 7 − 9 + 12 − 16

      = 12 − (7 + 9 + 16)

      = 12 − 32

      = −20


    (ii)  37 + (−23) + (−65) + 9 + (−12)

      = 37 − 23 − 65 +9 − 12

      = 37 + 9 − (23 + 65 + 12) 

      = 46-100

      = −54


    ​(iii) (−145) + 79 + (−265) + (−41) + 2

     = − 145 + 79 − 265 − 41 + 2

     = 79 +2 − ( 145 + 265 + 41)

     = 81 − 451

     = −370


    (iv) 1056 + (−798) + (−38) + 44 + (−1)

     = 1056 − 798 − 38 + 44 − 1

     = 1056 + 44 − (798 + 38 + 1)

     = 1100 − 837

     = 263


10: A car travelled 60 km to the North of Patna and then 90 km to the South from there. How far from Patha was the car finally?


Solution:

    Let the direction of north be positive and the direction of south be negative.

    Then,     Distance travelled to the north of Patna = 60 km     Distance travelled to the south of Patna = − 90 km

    Total distance travelled by the car = 60 + (​− 90)

       = − 30 km

    The car was 30 km south of Patna.


11: A man bought some pencils for Rs. 30 and some pens for Rs. 90. The next day, he again bought some pencils for Rs. 25. Then, he sold all the pencils for Rs. 20 and the pens for Rs. 70. What was his net gain or loss?


Solution:


    Total amount spent on pencils = Rs. 30 + Rs. 25

     = Rs. 55


    Total amount spent on pens (C.P) = Rs. 90


    Total cost price of pencils and pens (C.P) = Rs. 55 + Rs. 90 = Rs. 145


    Total sale price of pencils and pens (S.P)=  Rs 20 + Rs. 70

                      = Rs. 90


    Loss = cost price selling price

            = Rs. 145 Rs. 90

            = Rs.55 Hence, his net loss was Rs 55.



12: For each of the following statements write (T) for true and (F) for false: 


    (i) The sum of two negative integers is always a negative integer. 

    (ii) The sum of a negative integer and a positive integer is always a negative integer. 

    (iii) The sum of an integer and its negative is zero. 

    (iv) The sum of three different integers can never be zero.

    (v) | –5 | < | – 3 |

    (vi) | 8 – 5 | = | 8 | + | – 5 |


Solution:


    (i) True

    (ii) False: As if a positive integer is greater then it will be positive. 

    (iii) True: As ( a + a = 0 ).

    (iv) False: As the sum of three integers can be zero or non-zero

    (v) False: As | 5 | = 5 and | 3 | = 3 and 5 > 3.

    (vi) False: | 8 5 | = | 3 | = 3 and | 8 | + | 5 | = 8 + 5 = 13.


13: Find an integer a such that


    (i) a + 6 = 0

    (ii) 5 + a = 0 

    (iii) a + ( 4) = 0

    (iv) 8 + a = 0


Solution:


    (i) a + 6 = 0          a = 0 − 6         a = − 6     (ii) 5 + a = 0          a = 0 − 5

        ⇒ a = − 5     (iii) a + (−4) = 0         a = 0 − (−4)          a = 4     (iv) −8 + a = 0         a = 0 + 8          a = 8




एक टिप्पणी भेजें